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PREFACE

This report consists of three volumes which present the theory
and application of a valuable data reduction tool, the analysis of
covariance. Volume I introduces the analysis of covariance as a general
linear model (GIM) and then expands the model to incorporate the multi-
variate case, unequal sample size, and missing observations on the
response variable. Volume I also covers the analysis of covariance for
nonparametric data.

Volumes II and III were prepared by the Department of Statistics,
Oklahoma State University, Stillwater, Oklahama 74074, under Air Force
Contract F08635-76-C-0154, with the Air Force Armament Laboratory,
Armament Development and Test Center, Eglin Air Force Base, Florida
32542. The contract dealt with the development and programming of the
methodology for evaluating multiple variable data with missing
observations on deperdent and indeperdent variables by the analysis of
covariance method. The methodology also covers case for unequal sample
size. This work was begun in January 1976 and campleted in December 1976.
This is Volume II.

This technical report has been reviewed by the Information Officer
(OI) and is releasable to the National Technical Information Service
(NTIS). At NTIS it will be available to the general public, including
foreign nations.

This technical report has been reviewed and is approved for
publication.

‘ TKTNDER
g A1) w/wi/
Chief, Analysis Divisil
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: SECTION I
INTRODUCTION AND PROBLEM STATEMENT

The main purpose of this study is to extend work done on estimation
and hypothesis testing problems for multivariate linear models describing
situations that cannot be analyzed under the Standard Multivariate (SM)
general linear model. Kleinbaum (9) has developed the theory to deal with

the Growth Curve Multivariate (GCM) model and the More General Linear

Multivariate (MGLM) model which is applicable to the problem of missing
observations among the dependent variables in the SM model with known

design matrix. The author proposes to extend the results of Kleinbaum to

handle an analysis of covariance mode) with missing observations among

the independent variables or covariates as well as among the dependent
variables.

The Multivariate Analysis of Covariance (MAC) model is based on the

multivariate linear model

E(Y) = Xa + Z8 and !
Var(Y) = I, 8¢ (1) |

where Y 1is an nxp matrix composed of p-variate responses on n
individuals,
X is an nxm  known design matrix of rank R(X) = rx(smxsn)
corresponding to the classificatory variables of the model,

a 1is an m, Xp matrix of unknown parameters,




e

Z is an nxm,, matrix composed of concomitant variables, in
the sense that the constant elements of Z are not necessarily
planned in advance by the experimenter. R(Z) = rz(fmz <n),

B is an m,Xp matrix of unknown concomitant parameters,

I= (GPS) is a pxp positive definite matrix of usually unknown
parameters which represents the variance-covariance matrix
of any row of Y,
and AaB  is the Kronecker Product of the matrices A and B.

It is clear from Equation (1) that, in the MAC model, the measurements on
different individuals are assumed to be uncorrelated whereas the measure-
ments of the p response variates on the same individual may be correlated.

The MAC model may be more concisely represented by using the follow-
ing definitions:

A= [X : Z] is the nxm design matrix constructed by horizontally
augmenting the design matrix X by the matrix Z where
m=m_ +m,

X z
Y = [“] is the mxp matrix of unknown parameters constructed

B8
by vertically augmenting the parameter matrix o by the para-
meter matrix B.
Thus, the MAC model may be written as follows:
E(Y) = Ay and

Var(Y) = In az. (2)

VARIATE-WISE REPRESENTATION OF THE MAC MODEL

The MAC model may be alternatively represented in a variate-wise
representation by making the following definitions:
Yg is the nx1 vector which denotes the sth (s = 1,...,p) column

of Y,

Npe—————— .,....‘._‘



and is mx1 vector which denotes the sth (s =1,...,p) column of y.
Thus, Y = [14 Yo - xp]
and y'[y_] Yp ee- lp]
so that the MAC model may be described as
(3)
E(xs) = Axs, § = 1,2,... s p and
Cov(y,sy) = oI for all rys = 1,2,...,p.
Thus, the variate-wise representation consists of p univariate models

corresponding to the p variates. These p separate univariate models

are related by the Ei%:ll covariances between the different variate pairs.

VECTOR REPRESENTATION OF THE MAC MODEL

The vector representation of the MAC Model is obtained by making the

following definitions:

4 X
¥ 12
Let y = | . and y = :
Y
el W
Thus,
E(y) = DA]_ and (4)
Var(y) = @,

where DA = Ip aA and Q =z s In ;

ESTIMATION AND HYPOTHESES TESTING IN THE MAC MODEL

Rao(12) using generalized inverses has shown for the SM model that
the best linear unbiased estimate (BLUE) of a linear function of the

elements of the parameter matrix, when estimable, is given by the sum

of the BLUE's obtained separately from the univariate models resulting
3
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from the variate-wise representation. For estimating an estimable linear
set of elements of the parameter matrix, Roy(13) suggests using the sum
of the BLUE's for the linear sets obtained separately from the univariate
models. The results of Rao and Roy can easily be extended to the MAC
model.

The general linear hypothesis for the MAC model can be expressed in
the same form as is usual for the SM model for which a number of test
procedures have been proposed. For example, Wilk's Likelihood Ratio,
Hotelling's Trace (Toé), and Roy's Largest Root are the tests most commonly
used in practice. Explanations of these tests can be found in standard

texts on multivariate analysis such as Anderson(3) and Morrison (10).

EXPERIMENTAL SITUATIONS IN WHICH THE MAC MODEL DOES NOT APPLY

The MAC model, as defined in Equations (1), (2), (3), and (4), involves

three assumptions which are not always met in practice due to failure
or inability to obtain complete observations on all experimental units.
These assumptions are:
1. A response is observed on each variate on all experimental units.
2. The design matrix, X, is the same for each response variate.
3. Each concomitant response is observed on each experimental
unit.
In general, the above assumptions are met in the initial design

of an experiment unless it is physically impossible or uneconomical to

observe a response on each variate. But even when the experiment is initially

designed to conform to the above assumptions, missing observations can
occur among the independent as well as the dependent variables due to the

occurrence of some unfortunate event such as the dropping of a test tube,
the failure of an electronic instrument, or the death of a subject before

4




responses are observed on each variate. These events could be considered

random in the sense that their occurrence is equally likely for each
experimental unit.

Any failure of the experimental data to conform to the above
assumptions yields the MAC model inappropriate for analyzing the
experiment based on all observed data, because any experimental
units on which one or more dependent and/or independent responses are
missing requires the total deletion of that experimental unit. Thus,
the development of a procedure utilizing all the sample information

would be a valuable contribution to the analysis of such experiments.




SECTION II

LITERATURE REVIEW

Allan and Wishart (1) were probably the first to consider the problem
of missing data in statistical analysls, whereas Yates (16) was the first
to present a general solution using a least-squares method of substituting,
for missing values in a designed experiment. Wilks (15) discussed both
a maximum Tikelihood approach and a method-of-moments approach to the
problem of missing values in regression analysis.

Zyskind, Kempthorne, et al (17) preseht a very thorough treatmert
of the analysis of covariance technique, first introduced by Bartlett (4),
to a univariate linear model with missing observations occurring on the
dependent variable. They approach the problem by partitioning the

mode

E(X) = Xa and (5)

so that it may be written
X
s

E(l) = (xz)g_ (6)

where y is an nx1 vector of observations,

X = (X;) is an nxp known design matrix of full rank p<n,

and a is a px] vector of unknown parameters.

In general the computational formula for the fitting of a full model

of the form [Equation (2)] fs used where the data corresponding to the vec-

tor Xja of m components are missing or are simply not available. Thus,
e




the model to be fitted is E(Xg) = ng, but a solution to the normal equa-
tions X‘2 Xy a = X'2 2 is not immediate, whereas a solution to the normal
equations corresponding to the full set of data is standard. They capitalize
on the available information by considering the following analysis of co-
variance model form:

£@™ = (Nav (M g (7)
Y2 L Oy
where Im is an mxm identity matrix. Since the sum of squares of deviations
of the observations from their expected values for the model [Equation (7)] and
E the model E(y,) = X,u are minimized for identical sets of values for the

vector a, the computations required for fitting the model E(xz) = ng

can be performed on the corresponding analysis of covariance model. Then

using the facts: (i) that for the model

E(y) = Xa + Z8 (8)
the full set of normal equations

X'Xa + X'ZB = X'y (9)

Z'ka + 2'28 = I'y (10)

can be equivalently expressed as
X'Xa + X'28 = X'y
[(T-xxx)7xyz] (1 - x(x'x)™x)zJg = [(1 - x(x*x)"x")2) y (11)

and (i) that if A'a is an estimable parametric function for the model
4

E(y,) = X,a and if for the model E(y) = (Xz

X
) = (,\)a the BLUE of A'a
2
is given by:
'Yyt 2, (12)
the BLUE of A'a for the model E(y,) = X,a is given by
Ve ' (13
'8+ 3,') :
where g is obtained by solving the error normal Equations (11) where

7




0
' =m
z = [-Im;0] and y = (¥p). (13)
Thus, 8 in Equation (13) plays the role of Yy in the point
A Y
estimation of A'a for the model E(y) = (X?) = Xa. It would
2

appear that one could easily extend the results of Zyskind, Kempthorne

i L s o

et al to handle the problem of missing responses among the dependent
variables of a multivariate linear model. However, this is not the case

due to the dependence of their solution upon the fact that the residual

sum of squares for the model [Equation (7)] and the model E(Xg) = Xoo are

identical for identical sets of values for the vector a which is not

guaranteed in the multivariate case due to the covariate structure among

responses from the same experimental unit.

Haitovsky (7) compares two alternative methods for dealing with the
problem of missing observations among the independent variables and/or the
dependent variables in a univariate regression model. One method (Method
1) is simply to discard all incomplete observations and then apply the
ordinary least-squares technique to the complete observations. The other
method (Method 2) consists of computing the covariances between all pairs
of variables, each time using only the observations having values of
both variables, and to use these covariances in constructing the system
of normal equations.

Cov(x;, xj)B = Cov(xi,YL (isd = 1, <<+, m), where Cov(xixj) (14)

is the mxm covariance matrix in which the (i,j)th element (i,j = 1,...,m)

is computed from the measurements common to both X3 and xj (i#j) as well

as from all the existing measurements on X5 for i=j, and similarly for
Cov(Xi,y) (i =1,...,m). The comparison was made using Monte Carlo

techniques since Method 2 does not have optimal statistical properties

and since the derivation of its distribution theory is intractable. Comparing

the two methods with regard to unbiasedness and efficiency indicated
8




that Method 2 was superior only in the rare case in wviich 9 to 10. percent

of the observations were complete and hence available for use in Method 1.

By decomposing the Mean Square Error (MSE) into one term accounting for

bias and the other accounting for the variance when bias is ignored,

Haitovsky was able to show that the variance term was far more important

in the large difference observed in the two methods. He concluded

that, although the bias affects the relevance of the inference, the

major problem with Method 2 is caused by the inconsistency introduced into

the system of normal Equations (14).

Buck (6) treats the problem of missing values among the dependent

variables in a multivariate linear model by estimating the missing values

by regression techniques and then calculating a revised variance-covariance

matrix. He represents the sample of n experimental units by expressing

the responses, Y43 (1 = 1,2,....05 3§ = 1,2,...,p), in the form of an

nxp matrix, Y, in which some of the elements are missing. Assuming that

k of the n p-variate responses are complete, he lets these form the first

k rows of Y and then calculates the expected value of Y (r = 1,2,....k)

by’ forming for each value of j, the multiple regression of the jth variable

on the other p-1 variables from the set of observations consisting of the

first k rows of Y. Thus, he obtains p equations which can be expressed

The missing values are then estimated as follows. If the i

the jt

E(yrj) = fj(yr], Yp2s o0 Ypj1 Yy 41 oo yrp). (15)
th unit has

L observation missing, its value, yij’ is estimated by one of the

Equations (15) substituting Yi3 for Ypj that is,

E(y.ij) = fj(y.i]: Yigr =+ .Y.ij_]a yij+],...,yip),

This formulation assumes only one missing value in each incomplete response

9




but can be extended to the case in which units have more than one missing
value. Buck shows that if the value yj is missing for a proportion A

of all experimental units, and the predicted values are substituted and

a new variance-covariance matrix calculated, then the expectations in this

matrix are the same as they would be if there were no missing values,

except for the variance v';; of y; which, in terms of expectations, is

' o A
VY oo BN g = o—m—
JJ JJ ij

where V33 is the jth diagonal element of the variance covariance matrix,

say V, that would result if there were no missing elements and cjj is the

jth diagonal element in v
Beale and Little (5) propose a solution to the problem of missing

observations in the dependent variables of a multivariate normal linear

model based on the Missing Information Principle of Orchard and Woodbury

(11) which involves approximating the Maximum Likelihood solution through

an iterative technique. The argument of Beale and Little follows that

of Orchard and Woodbury but emphasizes that the effect of the principle

is to replace a maximiiation problem by a fixed point problem. They construct

a conditional likelihood function composed of the likelihood equation for

] known values plus a conditional l1ikelihood of unknown values given the

- known values and then show that a stationary solution to the conditiqna1

likelihood equation is equivalent to the Maximum Likelihood solution

based on the original likelihood equation. Thus, assuming the nxp observa-

tion matrix, Y, is distributed as a Multivariate Normal, they group the

observations into two vectors y and z with a joint distribution depending

on the vector © of parameters, where y has been observed but z has not

{ been observed. To approximate the Maximum Likelihood Estimate (MLE)
' 10
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0, of ©, based on the log likelihood L(y; ©), they suggest maximizing the
expected value of L(z,y;0) where z is treated as a random variable with
some known distribution. Thus, letting f(z/y;0) denote the probability
density function for the conditional distribution of z given y and o,
and letting L(z/y;0) denote In[f(z/y;0)], then

L(z,y:0) = L(yse) + L(z/y;:0). (16)
A distribution is defined for z by taking any assumed value o for ¢ along

with the observed value of y and one can then take expectations of both

sides of Equation (16), integrating with respect to z. This is expressed by

E{L(z,y30)/y30,} = L(y30) + E{L(z/y30)]ys IR (17)
They then find the value &y of o that maximizes the left hand side of

Equation (17) and write
oy = B(gy) (18)

since 9y may depend on 9p° Thus, Equation (18) represents a transfor-

mation from the vector T to the vector Oy from which the Missing

Information Principle originates. The Missing Information Principle

involves estimating @ by a fixed point of the transformation, namely

a value of © such that o = P(o).

As mentioned in the introduction, Kleinbaum (9) proposes a solution

to the problem of estimation and hypothesis testing for the MGLM

model which is applicable to the case involving missing observations among

the dependent variables in the SM model with known design matrix. He

writes the SM model in the form

E(Y) = Xa  and o

Var(Y) = In B
where X is an nxm known design matrix of rank R(X) = r(fmfn),

a is an mxp matrix of unknown parameters,
11
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and ¢ = ((crs)) is a pxp positive definite matrix of usually unknown
parameters representing the variance-covariance matrix of any
row of Y.
Letting X5 be the nxl1 vector denoting the gHh column of Y and o
the mx1 vector denoting the sth column of a, he writes the variate-wise

representation of the SM model as J
E(xs) = Xag s Var(xs) = Ogg In’ s=1, eos, p; (20)
Cov (o)) =

Then stacking the observation vectors on top of one another, the vector

o In when r#s.

representation of the SM model becomes

E(y) = ng (21)
Var(y) = @
where DX = Ip aXand Q=1 @ In'
L From these representations Kleinbaum develops a general form of the model

which allows the omission of responses from variates not observed on a
given experimental unit. For the case involving missing observations
among the dependent variables of an SM model, he constructs the
generalized model as follows. Assuming there are n experimental units
and p response variates Vl,...,Vp in total, he lets Z., 5= lsevsnp BE
the vector of length NS, say, corresponding to all observations on VS

in the entire experiment and lets XS be the Nsxm design matrix corresponding

to Z i.e., xS is determined from X by ommitting the rows which
correspond to missing values of Y He then lets the N XN (r <s) matrix
Q,. denote the incidence matrix of 0's and 1's defined by Q. " (qij(rs))
where h th
1 4f the i*M component of 2, and the j*" component of
a ; .
I(rs) Zg are observed on the same experimental unit,

0 otherwise
12




Thus, the variate-wise representation of the MGLM model is given by

E(_Z_s) = ngs Var(gs) = OSSINS (22)
Cov(zpzg) =0, Qua ¥ <5
COV(Zr’zS) = orSers‘ > 8y B8 = ]’._..p. :
and with the above definitions the vector representation of the MGLM is
4 given by:
! o S
‘ E(z)= X5 o and Var(z) = @ (23)
X
! L
pr —-— :— -
where z k o
25 i o
i) * 1 . " E(Mx1)”| , |
L |
;
z o
L ™ R
| ("nIN] e - oplp |
! ‘2%z Tarw, 2p%2p |
| SSHE e
'
°2p02p oppINp
13
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Kleinbaum then shows that the unique BLUE of any estimable linear
function or linear set of the treatment parameters is given by a linear
function or linear set, respectively, which involves the unknown
parameters of the variance matrix @. In fact, restricting linear
estimates to be known functions not involving Q requires additional
restrictive conditions on the model. Therefore, he considers Best
Asymptotically Normal (BAN) estimation which is a nonlinear method
of estimation using estimates of ¢ and yielding variances that are,
in large samples, the minimum that could be achieved by linear estimators
if Q@ were known.

For testing linear hypothéses in the MGLM model, assuming the
data is normally distributed, Kleinbaum suggests using test statistics
which are quadratic forms called Wald Statistics and are constructed

from BAN estimators of linear functions of the treatment parameters.

Since the asymptotic distribution of a Wald Statistic is a central

chi-square variable, the test criteria yield chi-square tests when the

sample size is large.

Attempts have been made by several authors to obtain Maximum Likelihood
Estimates (MLE) of the parameters in a multivariate linear model with
missing observations among the dependent variables. However, most of
these methods are applicable to only very specific models. For instance,
Anderson (2) describes an iterative technique for obtaining the MLE's

of a=gf( and o when X  is an (Nsx1) vector of ones. Hocking and

px1)
Smith (8) have developed a procedure for obtaining BAN estimators of

a and @ for the multivariate linear model with missing observations among

the dependent variables and they have shown for a special case that their
14
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approach yields the maximum likelihood solutions obtained by Anderson.
Their estimation procedure involves obtaining initial estimates of the
parameters from the group of observations with no missing values and then
modifying these initial estimators by adjoining the information in all
the remaining groups in a sequential manner by the addition of linear
combinations of zero expectations. However, for purposes of a general
computer program, extremely cumbersome notation would be required to

express the formulae for calculating the estimators at each stage. In

fact, Hocking and Smith have only considered a few special cases which

involve simply structured models. f

15




SECTION III

PROPOSED SOLUTION

It appears that, if it were possible to generalize the results cited
in the literature which deal with missing observations, at best one would
have procedures for handling missing values among the dependent and/or
independent variables in a univariate analysis of covariance model or
missing values among the dependent variables in a multivariate analysis
of covariance model. The general form of the SM model for missing
observations among the dependent variables, as discussed by Srivastava
(14) and Kleinbaum (9), does, however, appear to be valuable as an initial
representation of a MAC model in which missing observations occur among
the dependent and/or independent variables. In fact, the results
of Kleinbaum for estimation and hypothesis testing in the MGLM can be
generalized to the More General Multivariate Analysis of Covariance
(MGMAC) model by employing a proéédure for dealing with the missing in-
dependent variables similar to that employed by Zyskind, Kempthorne, et
al to deal with missing dependent variables in a univariate linear model.
THE MAC MODEL WITH MISSING DEPENDENT AND/OR MISSING INDEPENDENT
YARIABLES (MGMAC)

For purposes of clarity and simplification, the general form of
the MGMAC model will be presented by first rewriting the various forms
of the MAC model, then generalizing to the General Multivariate Analysis

of Covariance (GMAC) model (i.e., the MAC with missing dependent variables),

16




and finally by extending the GMAC to the MGMAC model ( i.e., with missing
dependent and/or independent variables). To make the presentation as
brief as possible, definitions of variables and parameters previously
defined will be omitted unless specifically needed for clarification.
The Multivariate Analysis of Covariance Model (MAC) can be repre-
sented by
E(Y) = Xa + 28 ' (24)
Var(Y) = In 8

or alternatively by

s 2
E(Y) = Ay where A= [x: 3 5 (25)
Thus, the variate-wise representation of the MAC is given by
Be) = Arge 8~ Lisenup ard (26)
COV(erXS) = 0pgl,  for all rsS, = 1,--.,Pt
and the vector representation is given by
(27)

E(y) = Dpy and Var(y) = @
where
DA = Ip @A and Q= @& In.

To obtain the general form of the GMAC, assume there are n experi-

mental units and p response variates V],...,Vp in total. Let 25 S = Vg

be the vector of length Ng» say, corresponding to all observations on Vs
in the entire experiment. Let As(Nsxm)’ s =1,...,p be the design matrix
corresponding to Zg p (8- As is determined from A by deleting those

rows which correspond to missing values of R Let Qrs(N )T s
rs

denote the incidence matrix of 0's and 1's defined by Qrs = (qij
(rs)
where

1 if the 1th th ccmponent of

a5 = component of A and the j
e Y are observed on the same experimental unit
0, otherwise.

17
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Then the variate-wise representation of the GMAC is given by

E(;s) =My Var(gs) = GSSINS (28)
Cov(z,nz) = 0, Qs ¥ <5
Cov(gT,gS) = °rsers’ r>s s = b, ..afs

The vector representation of the GMAC is given by

E(z) =Dy and Var(z) =@ (29)
where S A i
Z I-A] ¢ | 11‘],
’ A2 ‘ «)
g- = . 4 D = ‘ ! . I_ = l .
(Nx1) | . (NxM) ™ | Mx1)™ | .
% f “ pr
E p
-
AT PP °1lep-]',
o Ql (¢ 1 . 3 Glrga Q I
ey g Sty 2pi2p |
£(NxN) 2 |
i
\..Gpo 1p Gsz SRR cppINp :
N = E Ng and M = mp.
s=1

To obtain the general form of the MGMAC, assume that the design

matrix A =[X { Z] of the MAC model has ¢t missing observations

in the zth colum, (g = mx+1, cee, mx+mz). Then in the design matrices

A ) of the variate-wise representation of the GMAC model the Zth

s(Nxxm

column will have ’ts =

¢ £
units in which both the independent variable in column £ of AS and the

t - ks’ where kS is the number of experimental

dependent variable on variate VS are missing. Thus, AS would have

18
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m
tS = egl fts missing values.

Then replace Ag by Fg where FS is derived from AS by augmenting As (with
o's in place of missing values) by a matrix A; of dimension (Nsxts) composed of
t columns each with a one in the row position corresponding to the
s
missing values in AS and zeros elsewhere. [Note: Fs has dimension

(N_xm_) where Wyt ts.] Thus, the variate-wise representation
s's

of the MGMAC is given by

gt . (30)
E(Es) = Fe&s» Var(;s) K °rsINS
Cov(z, » zg) = Opsdpgs T < S
mvgrgs)=oQO I o S TR § S PO
where & = is and where és is a (tsx]) vector of unknown
_S

parameters due to the missing values in As'

The vector representation of the MGMAC model is given by:

E(z) = FE and Var(z) = (31)

F] ¢ £
where F(NxM) = Fo s &7} 5
AEREL | 5

N = E Ny and M= E m

s=1
ESTIMATION FOR THE MGMAC MODEL
Theorem 1: If © = H'E = B c;;s is estimable, and if £ is known then

s=1
H'€ has a unique BLUE given by

19




0=HE=HK(FTF) Folz
whose variance-covariance matrix is given by
Var(0) = H'(F'a”'F)"H

where C; is a known (msxl) vector (s = 1,..., p).

If we restrict our estimators to be known linear functions of 2,

then we cannot use the é_above unless it is independent of o .
Thedrem 2: For the MGMAC model © is not independent of Q unless the
following conditions are satisfied:

C'(F'FYF Qe V(F), re<s and

- s(F st) F's0

o & V(F's), r>s where

n

Qg (NXNJ), r<s (s = v gl

is defined as before.
If the above conditions are not satisfied,one is lead to consider

nonlinear methods of estimation which use estimates of ¢ and which give

variances that are, in large samples, the minimum that could be achieved

by Tinear estimators if © were known.

Theorem 3: A BAN estimator which is unbiased for any estimable set

© = H'g, is given by

= |A- 1 IA‘] s cA“]
8, = Wg = H(F'a 'F) F's ‘1 (32)

where § is obtained from o by substituting the elements of I = (ers)

given in Theorem 4 below for the corresponding elements of & = (ors).
Theorem 4: For the MGMAC model, a consistent and unbiased estimate of
I is given by g = (crs) where
- 1 ' = ' “ =
%ss T WRFT Z's [IN Fo(F'gFS) F s] Zo s=l...p (33)

S
and

20




{res = 1.2,....p)
where Nr(32) is the number of experimental units on which Vr is observed,

Nrs(fz) is the number of experimental units on which both V. and
V; are observed together,

Ers(erl) is the vector of all observations on Vr,

Zog(N_x1)* T#S is the vector of observations on V. which correspond
to"nits on which both Vr and VS are: observed together,

is the design matrix corresponding to
Fr(erm ) is g P g Z. and

Frs(Nrsxmr) is the design matrix corresponding to Z.-

The proof of the above theorem follows easily from Kleinbaum (9).

Theorem 5: For the MGMAC model, the asymptotic variance matrix of any BAN

estimator of an estimable linear set H'E, where H(M ) is of full rank
w, is given by

1

H'(F'e” 'F)H

Note: H'(F'Q']F)-H is the same as the variance matrix of the unique

BLUE set 0 = H'c for H'g when @ is known.
TESTING LINEAR HYPOTHESES FOR THE MGMAC MODEL

Theorem 6: For the MGMAC model, let H'E be estimable where H(wa) is known
and of full rank w. Then, if the null hypothesis is HO: H'E€ = 0,

Wy = e) et T oeg) (34)

is asymptotically distributed as a central chi-square variable with w

degrees of freedom, where

21




-

I is any positive definite consistent estimator of I,
{ and F are defined by the vector representation and H'¢ is any BAN
estimator of H'E. This result is easily extended from Kleinbaum (9).
To test the hypothesis HO: H'€ = 0, we may thus reject H0 if
W, 2 x;,l-a and accept otherwise.
NOTE: A1l the above theorems follow easily from similar theorems

by Kleinbaum (9).
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SECTION IV

A EXAMPLE

The following example is given to illustrate the procedures outlined
in Section III for testing hypotheses and for obtaining parameter estimates.
The data consists of a portion of data from an exercise in Morrison (10).
The samll sample size was chosen only in order to make the problem manageable
for hand computations. The dependent variables represent two character-
istics of urine specimens of young men classified into two groups according
to their degree of obesity. One measure, specific gravity, was selected
as a concomitant variable. The observations on these variates and the
concomitant variable are given below (blank spaces represent missing

observations):

Group I Group II
Y, % X Y, Y, X
17.6 5.15 24 18.1 9.00 3
13.4 5.75 32 19.7 5.30
20.3 4.35 17 16.9 9.85 32
22.3 7.55 30 23.7 3.60 20
20.5  8.50 30 19.2 18
18.5 18.0 4.40 23
12.1 5.95 25 14.8 7.15 3 |
12.0 6.30 30 15.6 7.25 28 |
10.1 5.45 28 16.2 5.30 21 :
2.75 24 |
23




If there were no missing observations, the model could be written in
the form of Equation (24) or (25). However, since observations are missing
from columns of Y and A (or Z), writing the model in the form of Equation (25)

results in blanks in the Y and A matrices as shown below:

E(Y) = Ay and (35)
Var(Y) = In a =z where
—~ _.l [ ‘]
17.6 5.15 1 0 24
13.4 5.75 1 0 32
] 20.3 4.35 1 0 17
22.3 7.55 1 0 30
20.5 8.50 1 0 30
3 18.5 Blank 1 0 Blank
12.1 5.95 1 0 25
12.0 6.30 1 0 30
0.1 5.45 ) 1 o0 28
Y = | Blank 3.75 | , A=[xtZ]=[1 o 24
18.1 9.00 ! 0 1 31
19.7 5.30 0 1 Blank
16.9 9.85 0 32
] 23.7 3.60 (0 20
19.2 Blank | 18
18.0 4.40 0 1 23
14.8 7.15 0 1 3
15.6 7.25 b7 28
16.2 5.30 0 1 21
1 Toqq, @
Y = {93 =N T2 ad =T %12
o o i
B2 =22 912 czaj
B B
» 1 Fa
‘ E
Transforming to the vector representation [Equation (29)] illuminates the
problem of missing observations among the dependent variables, but blanks
remain among the independent variables as shown below:
E(z) = Dy and (36)
Var(z) = @ where
.5
|
i
! 24
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To transform to the vector representation [Equation (31)] of the MGMAC

model, A] is replaced by F], X is replaced by 54. A2 is replaced by F2 and

Yo is replaced by 52 as shown below:

(37)

and

where

|

“ e el el

ecleojojeojejlolololelal dolojlolelole)]

STANOOWOOT—ONOMr—O—
NMDr—MOMONMNNM MNNOMONN

OO OCOCOOCOOOOr—r—r—r—r—r—r—r—

—_—_r—_—_r—_r—_r—_—_— O OO0 00O O0CO O

L |

and F2 =

| 1\

lefelololcfololelalel Joe}ololole]le]
[eofeloleleldolelolefololele]lelelole]

COQOONOV—ONOCCM—= Qo=

OO0 O0OO0OO0OO0Or~r—~r~r~r~r—r— r~r—

as defined before,

e e Or—r— OO0 00000 OO
s sl
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i I o]
& %2 a;
L with = =
£~ lg, £ 7 8 "B,
1 51
512 .
c 1 ' o
18 ! 1292
and LSRR 0 e T et as defined earlier.
12072 1 %0ty

Estimation of %

Using Theorem 4, a consistent and unbiased estimator

-~ ~

T = (ors) (38)

of £ is obtained by letting ¢

& ] ' = 0]

o T TeRET &' [ RERTRY 2
JAAK 1

" a ] ] = ' e [

22 T W) % [‘nz Fa(Fy'Fy) Fz] gy e

i = 1 ' - ' M u]
2 7 %12 T NR(F,T 4 [IN Fl2(Fia'Fia) Frp'] 25y where

1 12
Ny =18, Ny =17, Npp =Ny = 16
- o i S sk
17.6 .15 17.6 5.15
13.4 5.75 13.4 5.75
20.3 4.35 20.3 1,35
22.3 7.85 22.3 7.55
20.5 8.50 20.5 8. 50
18.5 5.95 12.1 5.95
12.1 6.30 12.0 6.30
z={120 1, 2= | 5.8 1. 2. %] j0.1 « | 5.5
i 10.1 =2 3.75 212 141 |0 & 9.00| °
18.1 9.00 19.7 5.30
19.7 5.30 16.9 9. 85
16.9 9.85 23.7 3.60
23.7 3.60 18.0 4.40
19.2 4.40 14.8 7.15
18.0 7.15 15.6 7.25
14.8 7.25 16.2 5.30 |
15.6 5.30 -
16.2 el e

G T B LT UV Y U s U T = e




e i

F] and F2 are defined as before and

i 1

Fi27Fa1®

OO OOOODOO = et e ed e e d

e e e e e —— O OOODODOOOO
N W
oo
COOCOODO—-0O0O0OCOOOODOOO

e

Substitution of the above values into Equation (38) results in

£ = |13.9694 1.7376 | .
1.7376 1.3775

ESTIMATION OF ORIGINAL PARAMETERS

P ]
*n
A BAN estimator which is unbiased for H'g = y = a9 is given by
51
“21
%22 |
B |

H'g = H'(F'ﬁ-]F)'F'ﬁ']g_ where (39)

Q s obtained from 2 by substituting the elements of T given above

for the corresponding elements of & ,

100000000
010000000
o 8y 6006000 -
' ; : ! F] ¢ e z,
"*loooo01000| F|,f]| Wz,
0 000O0O0TDYIT OO ¥ £
0000O00O0O 071 0
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Substitution of the appropriate values into Equation (39) yields

P 21.3524
@10 23.0662
TR B -0.2071
H.§.=l= P =
%5 -4.0121
L7y -3.2103
_821_ __0.3686_

In order to have obtained the parameters introduced into the model
by the missing observations among the independent variables in addition

to the original parameters, H = Iy would have been used in Equation (39).

HYPOTHESIS TEST - NO OVERALL GROUP EFFECT

The joint null hypothesis of no overall group effect, which can be

written
[0 -a o
H: HE = 11 12

where
0 02] = 022 0

1
e
B
N
12
“21
%22
B21
$21

1
\

— e
i

oO0cocococoo
OO —~—0o00OCOO
[+'}
=}
o
o
n

i
L
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is tested by computing

W= (D) (PR P W (W) (40)

Substitution of the appropriate values into Equation (40) results
in wn = 3.037 which yields an observed significance level between 0.1
and 0.25 based on the fact that Nn is asymptotically distributed as a
central chi-square with R(H) = 2 degrees of freedom. Based on the
results of this test, it could be concluded that at the commonly accepted
levels of significance there is not sufficient evidence to reject the

joint null hypothesis of no difference in the characteristics of urine

specimens of young men in Group I and Group II.
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APPENDIX A

LIST OF SYMBOLS

is @ (9x 1) column vector, and a' is the corresponding
(1 x q) row vector.
is a (p x q) matrix with aij as the element in the

th th

i” row and j- column.

is a partitioned matrix in which Aij is the sub-matrix

- row and jth column.

in the i
is the rank of the matrix A.

is the vector space spanned by the rows of A.

is the transpose of A.

is the trace of A.

is the unique inverse of a square matrix A of fyl] rank.
is any generalized inverse of the matrix A and is defined
by AATA = A.

is the Kronecker Product of the matrix A and B

defined by A e B = (aijB) where A = (aij) :

is the identity matrix of order q.

is the (px1) vector of zeros.

is the (pxq) matrix of zeros.

31




For x = (x]....,xn)' and y = (y],....ym)'.

Cov (x,y) is the (n x ) matrix with Cov(xi,yj) in the ith row
and jth column;

Var(x) is the (n x n) matrix Cov(x,x).

For Y(n x p) = (yij) , a matrix of random variables,

E(Y) is the (n x p) matrix of expectations of the elemtents

of Y, i.e., E(Y) = (Eyij) ;
Var(Y) is the (np x np) variance-covariance matrix of
the (np x 1) vector defined by putting the rows
of Y underneath each other in a long column vector
X v Np(g,z) means that the random variable x has a p-variate
multinormal distribution with mean vector u and

variance-covariance matrix £.

Q;i is the square root of a symmetric matrix @ defined
by Q% = C'AC where C is an orthogonal matrix
and A is a diagonal matrix such that @ = C'AZ2C.
zt is read as “the variable t with left subscript
2.
2tS is read as "the variable t with left subscript

2 and right subscript s".
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APPENDIX B
GLOSSARY OF TERMS

Given: A p-variate random sample, ) of size n from a population

Y (nxp
with probability density function f(Y,0), © € © (parameter
space, then:

An estimator, T, of the parameter g(0), © € ® is a function of
Y whose range contains the range of g(0).

An unbiased estimator, T, of g(@) is one such that

E(T) = 9(0)9 vO €6 .

Denote the class of unbiased estimators of g(©) by Ug.

A Minimum Variance Unbiased Estimator (MVUE) of g(®©) is a T ¢ Ug such that

Var(T) < Var(T*), ¥T* ¢ Ug and © € Q.

Let V_ be the class of all linear unbiased estimators of g(0).

g
Then T ¢ Vg if and only if
(1) T e Ug and

(i) T e a'Y where a is some constant vector.
A Best Linear Unbiased Estimator (BLUE), T, of g(0) is a T ¢ Vg such that
Var(T) ¢ Var(T*), v T* ¢ Vg and 0 € ©.

A sequence of random variables (Zn: n=1,2, <) converges in
distribution to the random variable Z with distribution function
F whenever
lim Fn(z) = F(z), for all continuity points
n->

x of F. This is denoted by Z, $ F, where F is the distribution
function of Zn(n =1, 2, ++¢).
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. An estimator

~

gn(uxl) based on a sample of n observations is

said to be a Best Asymptotic Normal (BAN) estimator for the

parameter

gquxl) = (e], see, eu)” provided

B d
/n B,* (e, Qo) 5 Nu(gu,lu) where

Bn(uxu) = Fisher's Information Matrix

3% lo
= E — _____fllﬁl .» where
LT 3 o2

o=,
9, s the true value of o,
% is the likelihood function for the samples

A B
6, has asymptotic dispersion matrix ﬁﬁ )
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